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1. Introduction.

Let {X n-- be a q-variate (1 < q < =) weakly stationary stochastic process

with the spectral density matrix f. In the Kolmogorov-Wiener theory of prediction,

one assumes that the spectral density f and the infinite past P={Xm; m<O} are

known and the problem is to express the linear least squares predictor of X1 ,

denoted by X1, in terms of the components of f and P. It can be shown that X1

can formally be written as

M-O

where Am= -CoDm+,, for the notation see Section 2.

In practice, however, one seldom knows f and P, and therefore it is necessary
A

to approximate X1 by some properly chosen approximants based upon the available

information. Very often, this available information is a finite segment of the

past, i.e. Pn- {X-m; C'm..n-l}. Here, we consider the as yet impractical case of

knowing f and Pn, and this will provide some useful results for the case when

only Pn is known and f has to be estimated.

Now, knowing f and Pn there are two natural approximants for X1. The first
n-i

one being the partial sum of the series representation of XI:Xi,n = I AmX-m.
m-O

The second approximant is the linear least squares predictor of X1 based on
n-I

Pn, denoting this by Xl,n , we have X1,nm I AnmX-m, where the coefficients Anm,
M-0

O<m<n-1, can be obtained as the result of solving a minimization problem. Having

identified these two approximants, it is natural to ask as how good they are.

Namely it is of interest to know how fast Iil-21,ni and IIX1-Xi,nllapproach

zero as n-*o. The main purpose of this paper is to find rates of convergence to S

zero for these quantities, or the errors of approximating the infinite pre-
A A

dictor X1 by finite predictors X1,n and X1,n"

S
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2

It is obvious that if the series representation of X does not converge in

the mean, then llXl-x I  II AxII does not go to zero at all as n-. This
n11 m-n+1 m -m

may suggest the type of (smoothness) conditions which one may need to impose on

{X } or f in order to obtain a fast rate of convergence.n

The rate of convergence of !jXl-X n1 is dominated by that of JI AmXml
I 1, minn+1

-X* 1, cf. (2.9). The rate of convergence ofliX -X* ni is expectedand 11Xl, n _ 1 ,n1, 1 n

to play fundamerial roles in some statistical probles related to the estimation

of f, when only P is available. For the univariate processes this is dem-n

onstrated in (2,6], see also Section 4.

Let G be the qxq matrix of one-step ahead prediction error. Define a-trG,

ao0(trGJ)2 and an IlXl-Xt,n l 2. Note that for q-l, ao 0 . With this notation

the outline of the paper is as follows. Section 2 is devoted to introducing

some preliminary results establishing some useful relationships among dn,o and

ao.

For a univariate stationary process an important result of Grenander and

Rosenblatt [4, Thm.4], [5, p. 188] gives necessary and sufficient conditions on f

for the rate of convergence of on-ao(-an-a) to decrease at least exponentially to

zero. The rate of convergence of On-a0 plays an important role in finding the

rate of convergence for finite linear predictors. The entire Section 3 is devoted

to finding an appropriate multivariate extension of this result of Grenander and

Rosenblatt, i.e. finding necessary and sufficient conditions on the matrix f

such that Sn-q an-a 0 decreases to zero at least exponentially, cf. Theorems 3.2

and 3.7. The proof presented in [4,5] depends heavily on the analytical properties _0

of orthogonal polynomials with respect to f. Since matricial orthogonal poly-

nomials may not enjoy all of these properties or they are hard to prove, special

attempt is made to prove the results of Section 3 without adherence to the

0



3

orthogonal polynomials. This is done by adapting a multivariate version of a

method used in Devinatz [3], cf. Theorem 3.1. Devinatz's proof of the necessity

part of the Result of Grenander and Rosenblatt is still based on properties of
0

orthogonal polynomials. We get around this by using a lemma due to Miamee [91,

cf. Theorems 3.6 and 3.7.

In Section 4 under the boundedness condition on the spectral density, cf. (4.1),

we show that the approximation errors; Ii X1-Xl,nl , I-xln[[ and IlXk,n-X1,n I

have the same order as 6n-q On-co Therefore, combining this with the multivariate

extension of the result of Grenander and Rosenblatt we get exponential rate of
0

convergence to zero for these errors provided that the entries of f are analytic

functions on [-.ir,7r], cf. Theorems 4.1 and 4.2. Theorem 4.3 provides a rate of

convergence for the finite linear interpolator of fXn) when only one value, say,

X0 is unknown.

2. Preliminaries

2
Let (rF,P) be a probability space and M=Lo(Q,F,P) the Hilbert space of all

complex-valued random variables on 0 with zero expectation and finite variance.

The inner product in M is given by

(x,y).EiY , x,yeH.

Following [8] for an integer q>1, Mq denotes the cartesian product of M with itself

q times, i.e. the set of all column vectors Xm(x1 ,x2 ,...,xq) with xt CM, i-=,2,...,q.

Mq is endowed with a Gramian structure. For X and Y in Mq their Gramian is defined

to be the qxq matrix (XY) - [(x. yj)]q- It is well-known that Mq is a Hilbert

space under the inner product ((X,Y)) - trace (X,Y) - (x ,y ) and norm

IJ XJ - /((X,X)). provided the linear combinations are formed with constant matrices

as their coefficients.

Throughout this paper, for a qxq matrix A-(a.j), trA-I a., A*m(aj), det A

stands for the determinant of A, A for the inverse of A when it exists and [IA1, E

for the Eucleadian norm of A i.e. IIAi1 E.(tr AA*). For two qxq matrices A and B,

2.



4

A>B means that A-B>O, i.e. A-B is a non-negative definite matrix. The qxq

identity matrix is denoted by I. Functions will be defined on [-Wn] and we

identify this interval with the unit circle in the complex plane in the natural

way. Values of a function f defined on the unit circle will be denoted by f(e)

instead of f(ee). dm stands for the normalized Lebesgue measure on [-ww], i.e.

dm(e)-d0/2T. For l< , LP(Hp) denotes the usual Lebesgue (Hardy) space of

functions on the unit circle. LP (HP denotes the space of all qxq matrix-
qxq qxq)

valued functions whose entries are in LP(HP).

In the following we introduce a few concepts which are needed in this study.

A more complete discussion with proofs can be found in [8,15].

Let { Xn; n E Z} C Mq be a q-variate weakly stationary stochastic process

(WSSP) with the spectral density matrix f. The time domain of { XnJ is defined

by sp { Xn: nC Z}Y *M (X), where sp{ } stands for the closed linear span of elements

of { } in the metric of Mq . The spectral domain corresponding to the spectral

density matrix f is denoted by L2(f) and is defined by L2(f) -{ 0; is a qxq matrix

valued function with II,D2 - ftr0(6)f(O)$*(6)dm( < -}. It is known thatf

L2 (f) with inner product given by ((Oi))f= ftr, f' *dm(e) is a Hilbert space

and it is isomorphic to M(X).
p

The problem of linear least squares prediction of a q-variate WSSP {Xn } can

be stated as the problem of finding the qxq matrices Am such that the linear

least squares predictor of X1 based on Xm, m<O, denoted by X1 , can be written as
n

X11l.i.m. I AmX m , where l.i.m. stands for the convergence in the norm of M
n- O m-0

(or in the mean). Let G-(XI-XI,XI-X1 ) be the one-step ahead prediction error

matrix. The process {Xn} is said to be of full-rank if the matrix G is nonsingular.
From now on, we assume that the process { Xn} is purely non-deterministic and

full-rank. This is equivalent to assuming that {XnJ has a spectral density f

12with log det f e L and f=n$*, where OEH2  is an outer function with constantqxq _

term 00 - . We refer to 0 as the generating function of the process { Xn}.

Since jXn } is full-rank, we can define a process { Yn called the normalized
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innovation process of { Xn} such that (Ym,Yn) 6m,nI . By using the Wold's

decomposition [8] we have

xn Cmoyn-m ' C-4-
Xn M-0 ( .

(2.1)

m-0

Since 0 is analytic with no zeros in the open unit disc, hence $1 is analytic 0

and denoting its Fourier (Taylor) coefficients by Dk, k-0,1,2,..., we have

(2.2) 4-imo 01 ime.

m 0

with this notation the linear least squares predictor of X1 can formally be

written as

(2.3) X1 -- CO  I Dm+lX-m , m
m-0

where the infinite series on the right hand side of (2.3) may not converge in

the norm of H

We say that the linear least squares predictor of X1 has a mean convergent

autoregressive representation if the series in (2.3) converges in the norm of Mq .

In practice, however, we have only a finite number of observations X0 ,XI1 ,...,
xi

(n-i) from which one has to construct a linear predictor for X1 . For this one

has two options. The first one being the partial sum of the series in (2.3). Thus,

with Am=-CoD,+ 1 and denoting this linear predictor by X1,n we have
I

n-1
(2.4) Xi1n_ I AmX-m

m-0

If X1 has a mean convergent autoregressive representation, then the norm of the

error of approximating XI by X1,n is given by

(2.5) iiXIi 1 ni = Ii I AmX--m I- 0 as n.

m-n+1

A different linear predictor for X1, denoted by X*, , can be obtained as the

linear least squares predictor of X1 based on n observations X., 0<m<n-1, from

I
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I

the past. Thus, we have

n-I
(2.6) X,= A'X- m

n-I 2
where Anm, <m<n-l, can be found by minimizing the norm liXi- I BmXl. I2

n mu'0
ftr(I- Y B ei m 0 ) f(I- . BLem)* dm(B) over all choices of the constantrn-i m rn-iM-1

matrices Bm.

Let us denote the minimum value of this norm by a . Then, it can be shownn

that this minimum is attained for the polynomial Pn(O)-O nn(e), where
n

n()- V e e is the unique polynomial of degree n satisfying
m0

(2.7) ftr V (O)f(e) e-'kdm()=6k,0 , O<k<n.

This unique minimizing polynomialVJn plays an important role in this paper. P

In the following we give a different characterization of the matrix-valued

polynomial Tn

Lemma 2.1. Let f* and ao0 .(tr 0 ) 2 . Then,

(a) min ftr(I-P)(I-PO)*dm- I jI- n42 din,

where the min is taken over all nth degree polynomials

n
pe)= I P .

m=0

(b) 2tI-"Vn 4II dm-q- a0/0 n  
S

Proof. (a) Let M - ep{eik  ; O<k<nj in L 2(f). Then the minimum in (a) is

attained for some H in Mn, if and only if I-HO is orthogonal to Mn or equivalently

Itr(I-HD)O*e-k dm-0, O<k<n.

It is easy to show that H-m/ 0 Un satisfies the above relation. (b) follows from

direct compulation and the fact that ftr VUn dm-a 0/on and (2.7) with k-0.
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Q.E.D.

Since - is the isomorph of Y0 (the normalized innovation) the following

corollary, which follows immediately from Lemma 2.1, provides a different

characterization of I) in that v,,On is the isomorph of the linear least

squares estimate of Y based on the finite past. Note that with this inter-

pretation, q- Y0/ n is the norm of the error of this estimator.

Corollary 2.2. Under the notation of Lemma 2.1, we have

rmin ftr(O -- 5 P M ra l- op) dm..tr (C-l-r fo0 ( -l- -OOV) *dm

"q-0 / n -

It turns out that the rate of convergence of q- a0/an as n- plays a crucial

role in studying the rate of convergence of finite linear predictors and inter- 5

polator of a q-variate WSSP {Xnp. This is shown in the next two sections. In

the following we record several inequalities which are useful in connecting

rates of convergence of different quantities related to the problem studied here.

The following chain of inequalities follows from the definition of Xj, X, 1 a

and XA

I1xi-xi [1.s Ilx1-X*'inil IlXl-Xln l

(2.8) OD11Ix-xI 11 + 11 1 AX-ml 11
m-n+1

^ S
For the last inequality to hold it is necessary to assume that X1 has a mean

convergent autoregressive representation and this will be assumed throughout

this paper. Also, for the norm of the error of approximation of X1 by X! we

have

(2.9) IxiX lx IX 'nX InI II I A X_m "
m-n+1

Let a denote the norm of the one-step ahead prediction error vector, that
A 2 2

is 0-l X1-X111 trG-trDO. It follows from (2.8) that

I
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o

(2.10) n o< I X -Xl <_ II A Xn n m-n+1 _

Thus the rate of convergence of n -0 is determined by that of II A A X mIl
n+l

And the rate of convergence of the latter is determined by q-0/0 as it follows

from Theorem 3.1 (b). The next section is devoted to the study of the rate of

convergence of q-a0/on , when the spectral density matrix f has sufficiently

smooth entries. We note that for a univariate process, i.e. q-1, n-0 and q-0/'on

have exactly the same rate of convergence (since -00). But, the situation is
S

completely different for q> 1.

3. Rates of Convergence of 6n-qn-C0.0

Since {OnJ is a bounded decreasing sequence it follows that the rate of

convergence of qon -O0 is the same as that of q-ao/O. The next theorem which

is a multivariate extension of Theorem I in Devinatz [3] plays an important role

in estimating the rate of convergence of 6n. Parts (b) and (c) of this theorem

is used in finding rates of convergence for the linear predictor and inter-

polator of {Xn}. .

Theorem 3.1

(a) If f-1E L1  and H is any matrix-valued trigonometric polynomial of degree
qxq

n with H>yI, 0<y<-, then, q-0/an < XI ftr(f -H)f(f-lH)*dm, where X>O D'

is a constant.

(b) If f>cI, O<c<-, then,

q-ao/0n >c I trD D*.
m>n

n O

(c) If cI<f<dI, O<c<d<-, and if Sn D k e

with trS S* <y<a for all n, then an n-

2 p

q- 0 /al(-jdy) I/a tr f f*. where f is the mth Fourier
0>1 m m m

ift I >
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coefficient f-.

Proof. (a) Let f=-$*, H-P*P, where (P and P are the optimal factors of f and H

respectively, cf. (8], [13, p. 504]. Denoting by 0 and P0 the constant terms of

these H2  functions, we have
qxq

.rtr (f- 1-H) f (f-]-H)dm.tr(I--p) *(*l--p d

(3.1) -ftr(,-IP -- *P*)PP*(P* 0*I-P)dm

>Yf IPO-(*P*) 11 j din.

In the above argument we have used the fact that for compatible matrices AB

trABftrBA, and that the eigenvalues of (PP*)(8) and (P*P)(e) are the same, and

they are greater than y.

-r~-1-C1 tog lt 1-1 DI
Since Pel x it follows that P$-Po 0 o is orthogonal to ($*P*)-I-Po. p

qxq' 0

therefore,

I. HS of (3.1) > 0Tf 1P - 0 i 112 dm-yftr(I-OPP) (,20)-I (I-0oPo)*dm

2

where X is the largest eigenvalue of 4PO2,(D and the desired result follows from

Lemma 2.1 (a), (b).

(b) From Corollary 2.2 we have

q-co/an-ftr(-l- T )f(0-l- 1 )*dm

>cfIl 1 - I- 1-Yr 2dmE

>C I. tr D D*,

- m-n+l mm

where the last inequality follows from the matricial Parseval's identity, cf. (151,

p. 121].

(c) By the matricial Parseval's identity we have
II-.S 2 -1 -1 2

2 dm<c .-_*S*S 1 Edm .
1m >n m E n n E

I



Also,

- nll E-i '-Snll Ell S -*S*Snll E'

and

2_IIs -O* Etr(I-OS)SlS*(I-OS*)*
I.n-sn n IE .'r(-*n n n -**n

<(tr S S*)tr(O-1 S )* ( -1s ) -n n n n

--<ydll 4- -Snll E"

Thus,

II * n *S nl E<(1+ ,r -T))! - s.. Il E"

and
i ..., +Y=Y 2 2J-K '1 d

tr 2_

[m l>n m fM - c n-oV U 11II d m

by Lemma 2.1(b). (

Q.E.D.

To find the rate of convergence of 6 nqn -a0 when the entries of f are sufficiently

smooth we need to have a matricial extension of the following important (univariate)

theorem due to Grenander and Rosenblatt [4,5]: A necessary and sufficient condition

that 6n-on-a0 decreases at least exponentially to zero as n tends to infinity,

is that f(e) coincides in [-7r,w] almost everywhere with a function which is

analytic for real e and has no real zeros.

In the rest of this section we prove a matricial extension of this theorem.

Our method of proof is similar to that of Devinatz [3]. However, in the proof

of the necessity part given here, we do not use the properties of orthogonal

polynomials with respect to f. Instead, we use a lemma due to Miamee [9] which

provides a simpler and more direct proof of this part. In this section by the

zeros of a matrix-valued function f we mean the zeros of det f.

L ....
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The following theorem provides a matricial extension of the sufficiency

part of the theorem of Grenander and Rosenblatt.

Theorem 3.2. Let f>cI, O<c<-, with entries that coincide in [-7r,l] almost

everywhere with functions which are analytic for real 8,. then

6nuqan-OOO(Pn), 0<0<1.

Proof. Since f>cI, it follows that the entries of f l=(f1j) are analytic in
1

an open annulus { Ze; p<IZ<-!}, 0.Ip-. By using an argument similar to that
p

in [3, pp. 114-115] we get that f k , the kth Fourier coefficient of f sat-

isfies O(pk ) and that S the symmetric partial sum of the Fourier series
o -1f-1

of f converges uniformly to f-. Thus, we have from Theorem 3.1 (a) that

for n large

6 n noO( jk>n k k

from which the result follows.

Q.E.D. P

By using an argument similar to that in the proof of Theorem 3.2, and

Theorem 2 [14] we obtain a slower rate of convergence for 6n under much weaker

differentiability requirement on the entries of f. It is interesting to compare L

this result with Theorem 3.1 and its special case in Baxter [1, p. 138].

Theorem 3.3. Let f>cI, O<c<-, and d be a positive integer.

(a) If all the entries of f-1.(f J) have 2d-th derivative on [-i,7], and the

Fourier series of these 2d-,th derivatives converge, then

6 nqan-O0 -O(n-2d).

(b) If all the entries of f-(fl ) have 2d-th derivative on [-ff,TT], and the

Fourier series of these 2d-th derivatives are absolutely summable, then

n -q n -cO 
=0(n -

2 d )
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Next, we prove a multivariate version of the necessity part of the theorem

of Grenander and Rosenblatt. For a matrix Lxq, we define a norm for

by ITI1' I 'VI ldm. The following lemma plays an important role in our proof

of this result. For completeness we sketch the proof of this lemma [9].

Lemma 3.4 (Miamee). If L2 (f)C L1 then there exists a positive constant M
Lqxq'

such that 11 *111l9_11lTl12(f )  for all TeL2(f). !

Proof. It is enough to show that the operator T:L2(f)-L defined by

T(T)-T is closed, then the result follows from the closed graph theorem.

Q.E.D.

The assumption L
2 (f)C is a natural one, since it guarantees that the ..J

qxq| ,

Fourier coefficients of any function in the spectral domain is well-defined.

Furthermore, it is not restrictive as the following simple lema shows.
1

Lemma 3.5. L2(f)C LI  if f- I L , and only if (det f)2q CL I.__ __ _ ' qxq Lqxq' " ..

The next theorem, which is of independent interest, shows that if .n

-1
goes to zero sufficiently rapidly, then the entries of f have summable Fourier

series [3].

Theorem 3.6. If 0 2n 0 <-and L2(f)C I , then the entries of f-1 haven-I 2n qxq

summable Fourier series.

Proof. We have from Corollary 2.2, Lemma 3.5 and Cauchy-Schwartz inequality that

(q-0o/On);'-(f tr(0-1-vr_ TUn)f (0 -1' -,, ) *dm);,

>(Mq) - 1 fjI€J-Vyo jj dm

i,j-1 4>0

>(Mq) I (k)l
ijml~
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for k>n+l, where Ij denotes the ij-th element of Un .

Thus, we have
2n+ l1,7:
2

1 k I< K 2 n' n-1,2,...,i ,J-1,....,q,

k-2n+l

and suming both sides over n we get

k-O

which implies that the entries of 0- have summable Fourier series. Hence, the

same is true of f -* * - cf. [7, p. 31].

Q.E.D.

Now we can prove the multivariate version of the necessity part of the Grenander

and Rosenblatt's theorem. D

Theorem 3.7. If 6 -O(pn), 0<p<1. Then f has no real zeros and all the entries of

n L

f are analytic on [-r,,i. -

Proof. Since 6 < o, it follows from Theorem 3.6 that f>cI for some constant
n-1

O<c<o. Thus, from Theorem 3.1 (b)

. tr D D* <K n
k-n+ k

and this implies that the entries of 4-1 and are analytic functions on

[T,w]. Hence, the entries of f-1 04- are analytic. Now, f-1 can have no real

1 -1 -1zeros since this would contradict the fact that f is in L . Thus, f,(f-) isqxq

analytic with no real zeros.

Q.E.D.

4. Rates of Convergence of Finite Linear Predictors

In this section by using the results of the previous section we find rates of

convergence for the finite linear predictors when the process f Xn has a smooth

spectral density function. Here, we confine our attention to the case wt.4n the

entries of f are analytic functions of 0. Similar results can be obtained when

S



i4

entries of f have properties like those stated in Theorem 3.3.

When X1 has a mean convergent autoregressive representation it follows from

(2.8) that the finite linear least squares predictor of X1, i.e. X, converges S
1,nA

to X1 in the norm of M
q . According to (2.9) the rate of convergence in this

case is dominated by I1 I A.NLmI and IJ Xl*nX?,nil 1 It is shown by Wiener
n+1 1, --

and Masani (15 II] that the boundedness condition

(4.1) cI < f < dI, 0 < c < d <,

is sufficient for the existence of a mean convergent autoregressive representation

of X1. For weaker conditions and more up to date results of this type, see

[11, 12]. It follows from (4.1) that

II I AX_,II 2< d f11i A a 11 du(e)p
n+1 n+1

(4.2) d I trA &

<do tr D m_ S

and thus from Theorem 3.1 (b) we have

(4.3) Ii 1 AX " O(6n) .

0+1

This combined with Theorem 3.2 and (2.8) gives the following

Theorem 4.1. Let {X n } be a q-variate WSSP with the spectral density matrix f

satisfying (4.1) whose entries are analytic function of e. Then, there exists

a p, 0< p <1, such that

(a) IIxI-X 1,nlI - O(Pn).

(b) a-O _ o(on).n

(c) Ix -xX1 ,n - - O(Pn). 0

(d) tr D D* -O(n) and tr C C* O(Pn).

k k k k
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Next we concentrate on finding the rate of convergence of IIXI-X1,nI

Because of (2.9) and (4.3) it is enough to find the rate of convergence of

IXt ,nX,nll . For q-1, this has been found by Baxter [1] using a certain

inequality and convergence equivalence involving Szeg5's orthogonal poly-

nomials. It seems very difficult to obtain matricial extension of these

results. In the following we obtain the rate of convergence of lX ,n-X 1,nil

when 1<q<o , without using the notion of orthogonal polynomials.

The rate of convergence of X,-Xnli is of fundamental importance in the

statistical theory of multiple time series, particularly in studying the asymptotic

properties of the autoregressive estimator of the spectrum, cf. [2,6]. This

importance is revealed by the following simple fact: If f>cI, then
S

(4.5) 2 IA M-C 0 DI 2M0( IX ,n-Xl,nil ),m-l E:

which provides a rate of convergence to zero for the entries of the matrices
~p

A -C0 DM, n-1,2,...

In the following we find the rate of convergence of j X*, -X1 nj by using

a slightly different but equivalent characterization of X* than that introduced
1,n

and used in Sections 2 and 3. This is based on identifying X* as the unique
1,n

minimizer of the matricial functional *(Y)-(X 1-Y, X1-Y), Ye L='sp{X-k; O<k<n-i}.

We say that YoeL is a minimizer of *(.) and write (Y o)-min V(Y) if
YEL 5

(Y0 )<_(Y), for all YcL.

It is shown in [8, p. 354] that such a Y0 exists and it is unique. This

unique minimizer is X*, indeed. Next we characterize the isomorph of X* ,
I , nt1,n

in the spectral domain. Let

(4.6) G -min fPfP*dm,
na

S.
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n e n
where the min is taken over all nth degree matricial polynomial P(6)- I PMeezm

n ieM,Om

with PoiI. If Un(8)- e is the minimizer of (4.6), then u can be
n m0 nm n

thcharacterized as the unique n degree polynomial with n0=I for which

ftnff eime dm-0, 1<m<n.

A different and more useful characterization of v is given by letting

V =G Vn and showing thatn n n

mlnf (I-Pn) (I-P(D) *din=

(4.7) f (i-%v ) (I-o(.V0 )*dmI-4 oio

f014Vf0-1-V *dm.

where the min is taken over all nth degree matricial polynomials. It should be

noted that the identities in (4.7) are essentially the matricial version of the
n

results of Lemma 2.1 and Corollary 2.2. Let S(e)- I D e , with these
n m-0 m

notations and the fact that G V -C.D -1 we have
n nO 0 0

n
IXt*nXinh I (G V -C D)

1,n71, rn-0 n =r 0DmX-I

-" (GV -GV ran GV mmGGl m

I O_-Gil 11 1 VXIIm -a11 jG 1110 0~ OVn Snil
E m-0 E

We have

G -G<tr(G -G).I-(- -0)I, Iln n n

Therefore,

(4.9) JIG n -G I6z-O(an -).
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The rate of convergence of 110%Vn-Snli can be obtained as follows:

From (4.7) with f>cI we have

c~ tr (I-A G G)] (f I I C1 -'tVnjl jdm)

(fI Sn-OVn ndm) -( d trDD*) ,

m>n m

therefore,

(4.10) (flpn- 0vII dm)<( Y trD D*) +c-[tr(I-0G GG)].
Sm>nn

From Theorem 3.1 (b) we have

(4.11) trD D* - 0(6 ),
m>n

as for tr(I--'G) we have from the simple identity
n

"that ---t h tt i( 1 -' 4 G -' ") ' t r G 1  ( Gn - G) 5_ ( t rG 2 )  ( t r ( Gn ' -G)  2 ] < K II G -a llE .  P "
nn n a n

Thus, from (4.9) we have

(4.12) tr(I-G 1'G) 0(a -a).
n n

By combining these estimates with (2.9), Theorems 3.2 and 4.1 (b) we get the

following
S

Theorem 4.2. Under the conditions of Theorem 4.1 we have

(1 2. 2d O(p).

(a) I ID k4On .iE ns,-0vnl E
M-0

A

Il jX ~-X 1 II"(Pn).
(b) 1,n

L(c)

• " , . .. , . " . . ." . _-
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Theorem 3.1 (c) can be used to find the rate of convergence for the finite

linear interpolator of {X n. For this let us assume that all the values of (X n

-I11
'are known, except for the value X. Then, under the assumption that f £Lqxq

it is known [10] that the linear least squares interpolator of XO, denoted by

XO , can formally be written as

V -A_11
(4.13) Xf 0 f- - -k#O

where f is the k Fourier coefficient of the matrix f-. Sufficient conditions

for the mean convergence of the series in (4.13) are given in [10]. In part-

icular, it follows from Theorem 7 [10] that the boundedness condition (4.1)

guarantees the convergence of this series.

Now one can form a finite interpolator for X0, denoted by X0,n and defined
IV ^-1 n ^

by Xona-f 0  f-kk'" The error in norm of this approximation is given by
k-n
kOO

2 d ~ f0 12 fIf ike 2d~'

IlK0 XO,nI 2 0Aljnf E m

A *

dhf 0 l1 2 1 tr fkf .
lkl>n k k

Thus, from Theorem 3.1 (c) we have

Xo-XO,n _  O(6,n

and combining this with Theorem 3.2 we get the following

Theorem 4.3. Under the conditions of Theorem 4.1 we have

ll00-,nI " O(pP), 0 < P< 1.

O~n --
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An exponential rate of convergence for the finite linear interpolator of

a univariate stationary process, when its past and future are at positive angle

[10,111, is obtained by Salehi [13]. However, in his work the finite linear

interpolator is obtained by using the Von Neumann's alternating projections,

as a result it is less feasible for computation since it involves the one-

sided innovation process 1Y n and the coefficients of the optimal factor of the

density. An interesting by product of Salehi's approach is the identification

of p in Theorem 4.3 with the cosine of the angle between the past and future

of the process {X }. In view of this, one may raise the following natural and

useful question: Is it possible to identify the constant p appearing in this

paper (say, in Theorem 3.2) with the cosine of the angle between the past and

future of the process { X}? If the answer is positive then in an obvious manner,
n

the results of this paper confirm the intuitively appealing fact that the closer

this angle is to 7/2 the faster the finite predictors will converge to the

infinite predictor X1.

Another problem which is worthy of study in connection with this work is

the infinite-dimensional generalization of the results presented here. Presence

of q in Theorem 3.1 and 6 shows that the method of proof used here is intrinsicallyn

finite-dimensional. It is of interest to know, e.g. the analogues of Theorem 3.1

and 6 in the infinite dimensional case.
n
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